Topological Derivatives in Plane Elasticity
نویسندگان
چکیده
We present a method for construction of the topological derivatives in plane elasticity. It is assumed that a hole is created in the subdomain of the elastic body which is filled out with isotropic material. The asymptotic analysis of elliptic boundary value problems in singularly perturbed geometrical domains is used in order to derive the asymptotics of the shape functionals depending on the solutions to the boundary value problems. Our method allows for the asymptotic expansions of arbitrary order, since the explicit solutions to the boundary value problems are obtained by the method of elastic potentials. Some numerical results are presented to show the applicability of the proposed method in numerical analysis of elliptic problems.
منابع مشابه
TOPOLOGICAL OPTIMIZATION OF VIBRATING CONTINUUM STRUCTURES FOR OPTIMAL NATURAL EIGENFREQUENCY
Keeping the eigenfrequencies of a structure away from the external excitation frequencies is one of the main goals in the design of vibrating structures in order to avoid risk of resonance. This paper is devoted to the topological design of freely vibrating continuum structures with the aim of maximizing the fundamental eigenfrequency. Since in the process of topology optimization some areas of...
متن کاملSmall Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-plane Pre-load Via Nonlocal Elasticity Theory
In this study, the free vibration behavior of orthotropic rectangular graphene sheet embedded in an elastic medium under biaxial pre-load is studied. Using the nonlocal elasticity theory, the governing equation is derived for single-layered graphene sheets (SLGS). Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. To verify the a...
متن کاملWave Propagation in Rectangular Nanoplates Based on a New Strain Gradient Elasticity Theory with Considering in-Plane Magnetic Field
In this paper, on the basis of a new strain gradient elasticity theory, wave propagation in rectangular nanoplates by considering in-plane magnetic field is studied. This strain gradient theory has two gradient parameters and has the ability to compare with the nonlocal elasticity theory. From the best knowledge of author, it is the first time that this theory is used for investigating wave pro...
متن کاملElastic analysis of Shrink-fitted Thick FGM Cylinders Based on Linear Plane Elasticity Theory
Nowadays, functionally graded materials (FGM) are widely used in many industrial, aerospace and military fields. On the other hand, the interest in the use of shrink-fitted assemblies is increasing for designing composite tubes, high-pressure vessels, rectors and tanks. Although extensive researches exist on thick-walled cylindrical shells, not many researches have been done on shrink-fitted th...
متن کاملThe topological derivative in anisotropic elasticity
A comprehensive treatment of the topological derivative for anisotropic elasticity is presented, with both the background material and the trial small inhomogeneity assumed to have arbitrary anisotropic elastic properties. A formula for the topological derivative of any cost functional defined in terms of regular volume or surface densities depending on the displacement is established, by combi...
متن کامل